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A b s t r a c t  

Ba2MgjH~0 and its deuteride were synthesized from BaMgL7 alloy and characterized by X-ray and neutron powder diffraction. 
They crystallize with the monoclinic Ba2NijFa0 structure type in space group C2/m (a = 18.014(2) A, b =5.876(1) A, c=7.879(1) 
~, /3=111.93(1) °, V=773.7(1) ~3 (hydride); a=17.950(7) A, b=5.856(2) A, c=7.869(3) A, /3=111.88(3) °, V=767.6(5) A. 3 
(deuteride) and are essentially isostructural to the recently reported Sr2MgjH~0, with slight differences in the coordination of 
the Ba atoms. The metal-deuterium bond distances range from 2.55 A to 3.20 ,~ (Ba-D) and from 1.90 A to 2.18 /~ (Mg-D). 
The shortest D-D distance is 2.57 A. 
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1. Introduction 

The first ternary alkaline earth hydride, Ca4MgjH14, 
was characterized two years ago [1]. Since then other 
members of this group, such as SrMgH4 [2], Ba2MgH6 
[3] and Sr2MgjH10 [4], have been synthesized. All of 
them contain magnesium as a constituent and can be 
considered as saline compounds. While the Ca com- 
pound is the only representative for its structure type, 
isostructural pairs do exist for the ternary Sr and Ba 
compounds, such as SrMgH4 [2] and BaMgH4 [5]. In 
this letter, we present the synthesis and crystal structure 
of the Ba analogue of Sr2MgjHlo [4]. 

2. Experimental details 

BaMgl.7 alloys were prepared by arc melting mixtures 
of the elements (Ba: ALFA, 99%, Mg: CERAC, 1/8", 
99.99%). The ingots were powdered under argon and 
hydrogenated (deuterated) in a high-temperature high- 
pressure autoclave for 6 days at 700 K and 85 bar 
hydrogen (deuterium) pressure. The final products were 
light grey and sensitive to air. 

The hydride and deuteride samples were character- 
ized by X-ray powder diffraction at room temperature 
(Bragg-Brentano diffractometer, CuKc~ radiation, Si as 
internal standard). The patterns were indexed to a 

monoclinic C-centered cell (a = 18.014(2) A, b = 5.876(1) 
A, c=7.879(1) A, /3=111.93(1) °, V=773.7(1) .~3 (h~c- 
dride); a = 17.950(7) .~, b =5.856(2) A, c = 7.869(3) A, 
/3= 111.88(3) °, V=767.6(5) .A, 3 (deuteride)). A refine- 
ment of the metal atom substructure of the deuteride 
based on the positional parameters of Sr2MgjD~o by 
using the program DBWS-9006PC [6] converged to 
RB = 10.8%, Rwp = 10.4%, S = 2.33 

The hydrogen positions were determined from neu- 
tron powder diffraction data of the deuterated sample 
as measured on the DMC diffractometer [7] at the 
reactor SAPHIR, PSI Villigen (Ge (311) monochrom- 
ator, A=1.6984 A, 20 range 3.0-134.8 ° , step size 
A20=0.1 o, (sin 0/A)m,x= 0.544 , - - i ,  T=293 K). The 
sample (7 g) was enclosed in a cylindrical vanadium 
container of 9 mm inner diameter and measured in 
high-resolution mode. The transmission factor was mea- 
sured 0xR=0.142), and the data were corrected ac- 
cordingly. For the structure refinement, the D atom 
coordinates of SrzMgjDlo [4] were taken as starting 
parameters. The structures of three phases were refined, 
monoclinic Ba2MgjDlo, monoclinic Ba6MgvD26 [5] and 
tetragonal MgDz [8]. The following 44 parameters were 
allowed to vary: three scale factors, the 0 zero position, 
three peak shape parameters, 10 cell parameters 
(BaaMgjDlo, four; Ba6Mg7D26, four; MgDz, two), three 
thermal displacement parameters and 24 positional 
parameters for BazMgjD m. Scattering lengths were 
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taken from [9]. Results are summarized in Table 1, 
and interatomic distances are given in Table 2. The 
observed, calculated and difference neutron powder 
diffraction patterns are shown in Fig. 1. 

Table 1 
Refinement  results on neut ron powder diffraction data for BazMg3D~o 
( T = 2 9 5  K; estimated s tandard deviations in parentheses) 

Atom Site x y z U~o 
( X 10-2 .~2) 

Ba l  4/ 0.283(2) 0 0.673(3) 0.3(3) 
Ba2 4i 0.385(2) 0 0.282(3) Um~ 
Mgl  4i 0.070(2) 0 0.451(3) 1.2(2) 
Mg2 4i 0.175(1) 0 0.009(3) UMgz 
Mg3 4g 0 0.266(4) 0 UMgz 
D1 8j 0.108(1) 0.259(3) 0.016(2) 2.2(1) 
D2 8j 0.149(1) 0.232(4) 0.480(2) Um 
D3 4i 0.024(2) 0 0.181(3) UD~ 
D4 4i 0.137(1) 0 0.746(3) Uo~ 
D5 4i 0.228(1) 0 0.273(3) Um 
D6 4i 0.530(2) 0 0.194(3) Uo~ 
D7 4h 0 0.224(5) 1/2 UDZ 
D8 4e 1/4 1/4 0 Uol 

Space group C2/m (No. 12). 
Cell parameters a=17.950(7)  ,~, b=5.856(2),  c=7.869(3)  /~, 

fl = 111.88(3) °, V =  767.6(5) .~3, Z = 4. 
RB=8.7%,  Rp=4.1%,  Rwp=5.6%, S=3.24  for 597 reflections. 
Form of the temperature factor: T =  exp[-8rr2U~o(sin20/A2)]. 

Table 2 
Selected interatomic distances shorter than 3.5 /~ for Ba2Mg3D~o 
(estimated standard deviations in parentheses) 

Bal  -- 2 D2 2.55(4) D1 -- Mg3 1.90(2) 
2 D2 2.69(3) Mg2 1.95(2) 
2 D1 2.87(2) Ba2 2.78(3) 

D4 2.88(4) Bal  2.87(2) 

D5 2.93(3) D2 -- Mgl  1.92(3) 
2 D5 2.98(1) Ba l  2.55(4) 

D6 3.12(5) Ba2 2.68(3) 
2 D8 3.20(3) Ba l  2.69(3) 

Ba2 -- 2 D7 2.68(3) D3 -- Mgl  1.97(3) 
2 D2 2.68(3) 2 Mg3 2.05(2) 
2 D1 2.78(3) 

D5 2.79(4) D4 -- Mg2 1.92(3) 
D6 2.93(5) Mgl 2.18(3) 

2 D4 2.95(1) Bal  2.88(4) 
2 D8 2.99(2) 2 Ba2 2.95(1) 

Mgl  -- 2 D2 1.92(3) D5 -- Mg2 1.94(3) 
2 D7 1.95(3) Ba2 2.79(4) 

D3 1.97(3) Bal  2.93(3) 
D4 2.18(3) 2 Bal  2.98(1) 

Mg2 -- D4 1.92(3) D6 -- 2 Mg3 1.97(2) 
D5 1.94(3) a a2  2.93(5) 

2 D1 1.95(2) Bal  3.12(5) 

2 D8 2.01(1) D7 -- 2 Mgl  1.95(3) 

Mg3 -- 2 D1 1.90(2) 2 Ba2 2.68(3) 

2 D6 1.97(2) D8 -- 2 Mg2 2.01(1) 
2 D3 2.05(2) 2 Ba2 2.99(2) 

2 Ba l  3.20(3) 
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Fig. I. Observed (top), calculated (middle) and difference (bottom) 
neutron powder diffraction patterns of Ba2Mg3Dlo, containing 
Ba6Mg7D26 and MgD2 impurity phases (A = 1.6984 /~). 

3. Results and discussion 

Ba2Mg3Dlo crystallizes with the monoclinic Ba2Ni3Flo 
structure type [10]. It is essentially isostructural to 
recently reported Sr2Mg3Dlo [4] and contains 3 Mg and 
2 Ba sites (for a structure drawing see Fig. 2 in [4]). 
While the deuterium environments of the small Mg 
atoms are very similar in both deuterides (sixfold oc- 
tahedral), the coordination spheres of the larger alkaline 
earths differ (Fig. 2). In the Sr compound both Sr sites 
are twelvefold coordinated (Sr2, cuboctahedral; Srl, 
twinned cuboctahedral), and the Sr-D distances show 
a clear gap (Srl, 12 distances in the range 2.49-2.96 
/~; 13th at 3.31/~ (D6); Sr2, 12 distances in the range 
2.51-2.89/~; 13th at 3.75/~ (D6)). In the Ba compound, 
both Ba sites show a clear gap, but only one is twelvefold 
coordinated (Ba2, 12 distances in the range 2.68-2.99 
/~, 13th at 3.83 ~ (D6)) while the other has 13 nearest 
deuterium neighbors (Bal, 13 distances in the range 
2.55-3.20 ~ ,  14th at 4.35 ~ (D3)). In the other reported 
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Fig. 2. Deuterium coordination spheres of  Sr and Ba in Sr2Mg3Dm 
(a) and Ba2Mg3Dm (b); numbers in small circles refer to deuterium 
sites. 

ternary compound of that system, Ba2MgD6 [3], there 
is only one Ba site, with twelvefold twinned cubocta- 
hedral deuterium coordination, while the Mg site has 
octahedral deuterium coordination. This relative flex- 
ibility of the coordination around Sr and Ba compared 
with the more rigid environment of Mg is consistent 
with trends observed in hydrogen-alkaline earth bonding 
characteristics. The ten shortest Ba-D and Mg-D bond 
distances in Ba2Mg3Dlo (Ba, 2.55-2.99/~, Mg, 1.90-2.18 
A.) do not differ significantly from those in BazMgD6 
(Ba-D, 2.73-2.86 A., Mg-D, 1.97/~) and in the binary 
deuterides BaD2 (2.57-2.98 ,~) [11] and MgD2 (1.95 
A) [8]. As expected from matrix effects, the Mg-D 
distances in BazMg3D10 are longer than those in the 
Sr analogue (1.81-2.14 ~). Likewise, the shortest D-D 

o 

distances in Ba2Mg3D~0 are 2.57 A, as compared with 
2.49 A in the Sr analogue. The conditions of synthesis 
indicate that both compounds are thermally more stable 
than MgH2. 
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